Surface coating of PLGA microparticles with protamine enhances their immunological performance through facilitated phagocytosis.
نویسندگان
چکیده
Surface modifications of poly(lactide-co-glycolide) microparticles with different polycationic electrolytes have mainly been studied for conjugation to antigens and/or adjuvants. However, the in vivo immunological effects of using surface charged particles have not been address yet. In this study, microparticles were coated or not with protamine, a cationic and arginine-rich electrolyte that confers microparticles with a positively surface charge. We then evaluated the potential of protamine-coatings to assist the induction of immune responses in mice. Interestingly, enhanced antibodies and T-cell responses were observed in mice treated with the coated particles. In vitro studies suggested that the improved immunological performance was mediated by an increased uptake. Indeed, protamine-coated particles that carried a plasmid were even internalised into non-phagocytic cells and to cause their transfection. These results open the way for further research into a novel technology that combines the use protamine for facilitated cell penetration of that and biodegradable microparticles for prolonged antigen or drug release.
منابع مشابه
Preparation and In-vitro Evaluation of Controlled Release PLGA Microparticles Containing Triptoreline
Triptoreline is a potent agonist of luteinizing hormone-releasing hormone, currently used in the treatment of prostatic cancer where therapy may be required over months or years. Frequent injection of drug decreases patients’ compliance. The present study describes the formulation of a sustained release microparticulate drug delivery system containing triptoreline acetate, using poly (D,L lacti...
متن کاملThe intracellular uptake of CD95 modified paclitaxel-loaded poly(lactic-co-glycolic acid) microparticles.
The CD95/CD95L receptor-ligand system is mainly recognised in the induction of apoptosis. However, it has also been shown that CD95L is over-expressed in many cancer types where it modulates immune-evasion and together with its receptor CD95 promotes tumour growth. Here, we show that CD95 surface modification of relatively large microparticles >0.5 μm in diameter, including those made from biod...
متن کاملPreparation and In-vitro Evaluation of Controlled Release PLGA Microparticles Containing Triptoreline
Triptoreline is a potent agonist of luteinizing hormone-releasing hormone, currently used in the treatment of prostatic cancer where therapy may be required over months or years. Frequent injection of drug decreases patients’ compliance. The present study describes the formulation of a sustained release microparticulate drug delivery system containing triptoreline acetate, using poly (D,L lacti...
متن کاملThree steps to breaking immune tolerance to lymphoma: a microparticle approach.
In situ immunization aims at generating antitumor immune responses through manipulating the tumor microenvironment. On the basis of recent advances in the understanding of antitumor immunity, we designed a three-step approach to in situ immunization to lymphoma: (i) inducing immunogenic tumor cell death with the chemotherapeutic drug doxorubicin. Doxorubicin enhances the expression of "eat-me" ...
متن کاملConjugation of polyamidoamine dendrimers on biodegradable microparticles for nonviral gene delivery.
We report on the preparation and characterization of poly(D, L-lactide-co-glycolide) (PLGA) microparticles with surface-conjugated polyamidoamine (PAMAM) dendrimers of varying generations. The buffering capacity and zeta-potential of the PLGA PAMAM microparticles increased with increasing generation level of the PAMAM dendrimer conjugated. Conjugation of the PAMAM dendrimer to the surface of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of controlled release : official journal of the Controlled Release Society
دوره 130 2 شماره
صفحات -
تاریخ انتشار 2008